970 resultados para Bass Dicentrarchus-labrax


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration of the hypophysiotropic GnRH (GnRH-I) neurons during early development is a crucial step in establishing a normally functioning reproductive system in all vertebrates. These neurons derive from progenitor cells in the olfactory placode and subsequently migrate to their final position in the ventral forebrain, where they mediate hypophysiotropic control over Lh. We use zebrafish as a model to investigate the path and the factors that mediate the migration of the GnRH-I neurons during early development. A transgenic line of zebrafish, in which GnRH- I neurons specifically express a reporter gene (GFP) has been developed in our lab. This was achieved by integrating a GnRH-I promoter/GFP reporter transgene into the zebrafish genome. The resulting transgenic line allows us to track the route of the GnRH-I neuronal migration in real time and in vivo. We have used this line to conduct time lapse imaging to ascertain the exact migrational path and the final position in the ventral forebrain of the GnRH-I neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the fish parasitic isopod, Ceratothoa oestroides (Risso), on haematological parameters of its cage-cultured sea bass host, Dicentrarchus labrax (L.), were studied. Analyses of blood parameters (cell counts, haemoglobin content and haematocrit) were carried out on parasitized and unparasitized sea bass from a fish farm in Turkey. Parasitized fish had significantly lowered erythrocyte counts, haematocrit and haemoglobin values and significantly increased leucocyte counts. Blood feeding by C. oestroides thus produces a post-haemorrhagic anaemia and the fish appear to mount an immune response to the presence of parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monounsaturated fatty acids (MUFA)-rich and n-6 polyunsaturated fatty acid (n-6 PUFA)-rich vegetable oils are increasingly used as fish oil replacers for aquafeed formulation. The present study investigated the fatty acid metabolism in juvenile European sea bass (Dicentrarchus labrax, 38.4 g) fed diets containing fish oil (FO, as the control treatment) or two different vegetable oils (the MUFA-rich canola/rapeseed oil, CO, and the n-6 PUFA-rich cottonseed oil, CSO) tested individually or as a 50/50 blend (CO/CSO). The whole-body fatty acid balance method was used to deduce the apparent in vivo fatty acid metabolism. No effect on growth performance and feed utilization was recorded. However, it should be noted that the fish meal content of the experimental diets was relatively high, and thus the requirement for n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) may have likely been fulfilled even if dietary fish oil was fully replaced by vegetable oils. Overall, relatively little apparent in vivo fatty acid bioconversion was recorded, whilst the apparent in vivo ?-oxidation of dietary fatty acid was largely affected by the dietary lipid source, with higher rate of ?-oxidation for those fatty acids which were provided in dietary surplus. The deposition of 20:5n-3 and 22:6n-3, as % of the dietary intake, was greatest for the fish fed on the CSO diet. It has been shown that European sea bass seems to be able to efficiently use n-6 PUFA for energy substrate, and this may help in minimizing the ?-oxidation of the health benefiting n-3 LC-PUFA and thus increase their deposition into fish tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Most marine fish larvae require high amounts of n-3 HUFA (highly unsaturated fatty acids) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Watanabe, 1982; Izquierdo, 1996). Fish larvae tissue lipids are also very high in n-3 HUFA, what implies a higher risk of peroxidation (Sargent et al. 1999) and cellular damage (Kanazawa, 1991), requiring then antioxidants to protect them intra- and extra-cellularly from free radical compounds. Vitamin E (Vit E) functions as a chain breaking antioxidant, reacting with the lipid peroxide radical produced and preventing the further reaction with a new PUFA. Hence their requirements are related with the dietary and tissue PUFA contents. The objective of the present study was to determine the effect of dietary Vit E on gilthead sea bream and sea bass survival, growth and stress, at different n-3 HUFA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de Doctorado: Acuicultura

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de Doctorado, Acuicultura: Producción controlada de organismos acuáticos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification, caused by rising concentrations of carbon dioxide (CO2), is widely considered to be a major global threat to marine ecosystems. To investigate the potential effects of ocean acidification on the early life stages of a commercially important fish species, European sea bass (Dicentrarchus labrax), 12 000 larvae were incubated from hatch through metamorphosis under a matrix of two temperatures (17 and 19 °C) and two seawater pCO2 levels (ambient and 1,000 µatm) and sampled regularly for 42 days. Calculated daily mortality was significantly affected by both temperature and pCO2, with both increased temperature and elevated pCO2 associated with lower daily mortality and a significant interaction between these two factors. There was no significant pCO2 effect noted on larval morphology during this period but larvae raised at 19 °C possessed significantly larger eyes and lower carbon:nitrogen ratios at the end of the study compared to those raised under 17 °C. Similarly, when the incubation was continued to post-metamorphic (juvenile) animals (day 67-69), fish raised under a combination of 19 °C and 1000 µatm pCO2 were significantly heavier. However, juvenile D. labrax raised under this combination of 19 °C and 1000 µatm pCO2 also exhibited lower aerobic scopes than those incubated at 19 °C and ambient pCO2. Most studies investigating the effects of near-future oceanic conditions on the early life stages of marine fish have used incubations of relatively short durations and suggested that these animals are resilient to ocean acidification. Whilst the increased survival and growth observed in this study supports this view, we conclude that more work is required to investigate whether the differences in juvenile physiology observed in this study manifest as negative impacts in adult fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studying gamete biology can provide important information about a species fertilization strategy as well as their reproductive ecology. Currently, there is a lack of knowledge about how long sea bass Dicentrarchus labrax eggs can remain viable after being activated in seawater. The objectives of this study were to understand the effects of pre-incubation of fresh and overripe sea bass eggs in seawater and to determine the duration of egg receptivity. Pooled eggs (fresh and overripe) from four females were pre-incubated in seawater for 0 min (control), 0.5 min, 1 min, 3 min, 10 min and 30 min and then fertilized by pooled sperm from four males. The fresh eggs had a higher fertilization success than overripe eggs. Our results revealed a significant effect of pre-incubation time for both the fresh (P < 0.01) and overripe eggs (P < 0.01). Fertilization success of eggs significantly declined for both these treatments after 3 min of pre-incubation, which clearly indicates that sea bass eggs are able to be fertilized by sperm for up to 3 min after release into seawater. This study has particular importance for understanding fertilization strategies, reproductive potential, as well as reproductive ecology of sea bass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microplastics are present in marine habitats worldwide and may be ingested by low trophic organisms such as fish larvae, with uncertain physiological consequences. The present study aims at assessing the impact of polyethylene (PE 10-45µM) microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Fish were fed an inert diet including 0, 104 and 105 fluorescent microbeads per gram from 7 until 43 days post-hatching (dph). Microbeads were detected in the gastrointestinal tract in all fish fed diet incorporating PE. Our data revealed an efficient elimination of PE beads from the gut since no fluorescent was observed in the larvae after 48h depuration. While the mortality rate increased significantly with the amount of microbeads scored per larvae at 14 and 20 dph, only ingestion of the highest concentration slightly impacted mortality rates. Larval growth and inflammatory response through Interleukine-1-beta (IL-1) gene expression were not found to be affected while cytochrome-P450-1A1 (cyp1a1) expression level was significantly positively correlated with the number of microbeads scored per larva at 20 dph. Overall, these results suggest that ingestion of PE microbeads had limited impact on sea bass larvae possibly due to their high potential of egestion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca2+ response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 A degrees C and changes in intracellular calcium concentration ([Ca2+](i)) following KCl stimulation were measured using Fura-2, at 12 or 22 A degrees C-test. The increase in [Ca2+](i) resulted primarily from extracellular Ca2+ entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca2+ response was observed between 12- and 22 A degrees C-acclimated fish. In particular, a greater increase in [Ca2+](i) at a high level of adrenaline was observed in 22 A degrees C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U-CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.